Processing...

`V = "fr" * d `

Enter a value for all fields

The **Volume from the Flow of Pipe over Time **calculator computes the total accumulated volume of liquid based on a flow rate and a duration of time.

**INSTRUCTIONS:** Choose units and enter the following:

- (
**fr**) Flow Rate - (
**d**) Duration of flow

**Volume of Flow (V):** The calculator returns the total volume in gallons. However, this can be automatically converted to compatible units via the pull-down menu.

* Pipe Flow *

The Volume from Flow equation is:

V = fr • d

where:

- V = Total volume over time
- fr = Flow rate
- d = Duration of flow

**Rolling Offsets (Run and Travel)**– The Rolling Offset**Rolling Offset Lengths**function computes the run and travel length a rolling offset based on the offsets and fittings. (see diagram).**Pipe Grading****Diagonal of a Square**- This is a simple calculation to assist in computing the diagonal of a square.**Diagonal of a Box**- This computes the length of the diagonal of a box (**T**) based on sides of length**R, S**and**U**.**Flow Rate**- This computes flow rate based on the total volume and the time it took to accumulate.**Pipe Flow Volume**- This computes the total volume from a pipe based on the flow rated and the duration of flow.**Weight of Water in a Tank**- Computes the weight of water in a cylindrical tank based on the radius and height (or length).**Weight of sea water in pipe**- Computes the weight of sea water in a cylinder based on the radius and height (or length)**Pressure Head**- The Potential Gravity-Fed Water Pressure from a Tank (a.k.a. Pressure Head) based on the height of storage.**Pipe Volume**- Computes the volume in a pipe**Pipe Contents Weight**- Computes the weight of liquid in a pipe.**Pipe Surface Area**- Computes the surface area of a pipe.**Pipe Grading**- Compute the drop needed over a run to maintain a grade (e.g., 4" over 12')**Volume of a Cylindrical Container**(e.g. hot water tanks),**Volume of a Spherical Container****Weight of Water in a Spherical Container****Volume of a Rectangular container****Weight of Water in a Rectangular Container****Capillary Rise**- The height of water in a small tube due to capillary force.**Snow Water Equivalence**- The volume of water created by an area and depth of snow.**Pore Water Pressure**- Pressure of uplift from the water table.