bore stroke ratio

Not Reviewed
Equation / Last modified by KurtHeckman on 2018/01/03 17:51
Rating
ID
KurtHeckman.bore stroke ratio
UUID
d4e81b92-1261-11e4-b7aa-bc764e2038f2

The Bore Stroke Ratio calculator computes the ratio between a borestrokeratio-illustration.pngcylinder's bore length (b) and its stroke length (s).  

INSTRUCTIONS: Choose units and enter the following:

  • (b) the bore of the cylinder
  • (s) the stroke length of the cylinder.

Bore Stroke Ratio: The calculator provides the ratio of the bore (diameter) to the cylinder stroke length. 

Related Calculators:

  • RATIOS AND LENGTHS:
    • Bore (diameter): Compute the Bore Diameter based on the engine displacement, number of cylinders and the stroke length.
    • Compression Ratio: Compute the Combustion Ratio base on the minimum and maximum displacements of the cylinder at the beginning (1-Induction) and compressed (3-Power) portions of the combustion cycle (see animation)deck height.png piston and cylinder components
    • Displacement Ratio: Compute the Displacement Ratio based on the volumes at the beginning and end of the stroke.
    • Rod Length Stroke Ratio: Compute the Rod and Stroke Length Ratio base on the two lengths.
    • Stroke (length): Compute the Stroke Length based on the total engine displacement, number of cylinders and the bore.
  • VOLUMES:
    • Total Engine Displacement: Compute the Total Volume (displacement) of a Combustion Engine based on the bore, stroke and number of cylinders.
    • Engine Cylinder Volume: Compute the Volume (displacement) of a Engine Cylinder based on the bore and stroke.
    • Engine Cylinder Overbore Volume: Compute the Volume (displacement) of an Engine with an Overbore based on the stroke, bore, overbore and number of cylinders.
    • Rotary Engine Equivalent Displacement: Compute the Equivalent Volume of a Rotary Engine based on the swept volume and number of pistons.
    • Compression Volume (V2): Compute the Compressed Volume of a Cylinder when the piston is at the end of the stroke and the chamber is at its smallest (and most compressed) volume, based on the chamber, deck, crevice, chamfer, gasket, valve relief and dome/dish volumes.  This is the second volume (V2) in the Compression Ratio calculation.
    • Gasket Volume: Compute the Volume of a Gasket based on the inner and outer diameters and the gasket's thickness.
    • Deck Volume: Compute the Volume of a Cylinder Deck based on the deck height and the bore.
    • Crevice Volume: Compute the Volume of a Cylinder Crevice based on the piston diameter, cylinder bore and the crevice height.
    • Chamfer Volume: Compute the Volume of a Cylinder Chamfer based on the cylinder diameter and the chamfer height and width.
  • SPEEDS AND RPMS:
    • Piston Speed: Piston Speed (mean) based on stroke length and RPMs.
    • Max Piston Speed: Max Piston Speed based on stroke length and RPMs
    • RPMs: RPMs based on desired piston speed and stroke length.