Processing...

`E_"el" = k_e *( Q_1 * Q_2 ) / "d" `

Enter a value for all fields

The **Electrostatic Potential Energy** calculator computes the magnitude of potential energy between two charged particles based on their charge and the distance between them.

**INSTRUCTIONS**: Choose units and enter the following:

**(**Charge of Particle One**Q1**)**(**Charge of Particle Two**Q2**)**(**Distance between Particles**d**)

**Electrostatic Potential Energy (E _{el}): **The results are returns in electron volts (eV). However, this can be automatically converted to compatible units via the pull-down menu.

The Electrostatic Potential Energy equation computes the magnitude of the potential energy resulting from the electrostatic interaction of two charged particles having charges of `Q_1` and `Q_2` respectively, where the particle are separated by distance **d**.

The potential energy is proportional to the product of the two charges and inversely proportional to the distance between the charges, so `E_"el" prop (Q_1*Q_2)/d`.

The constant of proportionality in this equation is the Coulomb Constant, `k_e`.

- Kinetic Energy (change of velocity) : K = ½⋅m⋅(V
_{1}-V_{2})² - Kinetic Energy: KE= ½⋅m⋅v²
- Relativistic Kinetic Energy
- Quantum Energy
- Potential Energy
- Potential Energy of Gravity (two bodies)
- Nuclear Binding Energy: E = m⋅c
^{2} - Energy of a Particle in a Box
- Planck's Equation: E = h⋅f
- Molecular Kinetic Energy
- Electrostatic Potential Energy
- Photon Energy from Wavelength

The potential energy can be a due to either the force of attraction (between particles of opposite charge) or the force of repulsion (between particles of the same charge).