Processing...

`Wall = f( L , H , W , 18 , 3 , 1 , 8 )`

Enter a value for all fields

The **Wall - Rebar, Concrete and Forms** calculator computes the length or weight * CONCRETE WALL*

**INSTRUCTIONS:** Choose length units (e.g. feet or meters) and enter the following:

- (
**L**) Length of Wall - (
**H**) Height of Wall - (
**W**) Width or Thickness of Wall - (
**rS**) Rebar Size - (
**oC**) Rebar on-center Spacing. (Default 18") - (
**i**) Rebar inset from Edges (Default 3") - (
**M**) Number of Rebar Mats (grids)

**Concrete Wall Materials:** The calculator returns the rebar **Length** in feet, the rebar **Weight** in pounds, the **Volume** of concrete in cubic yards, and the **Surface Area** of the forms in square feet. However, all of these can be automatically converted to other units (e.g. feet to meters, pounds to kilograms, cubic yards to cubic meters, square feet to square meters) via the pull-down menu.

Rebar is short for reinforcing bar. Rebar is a roughly circular steel bar with ribs used to provide added tensile strength to concrete structures. Rebar is put in place before concrete is poured. When the concrete has hardened, the concrete around the rebar ribs keep the rebar in place. Rebar and concrete expand similarly with temperature variations. This all has the net result of substantially added tensile strength when rebar is part of the concrete form. Carbon steel is the most commonly used material for rebar, which may also be coated with zinc or epoxy resin.

Rebar is laid out in grids, crisscrossed patterns of rebar, tied at the intersections where runs of rebar touch. The grids have spacing between the rebar rows, and they are placed within the concrete form by a specified inset from the edge of the concrete. Multiple parallel grids, at uniform space intervals, are referred to as rebar mats.

- Rebar - reinforcing steel bar.
- Stick - one length of rebar. In the U.S., the most common lengths of rebar sticks are 20', 40' and 60'.
- Lapping - when two sticks of rebar are overlapped and bound together.
- Lapping Factor - the multiple of a rebar diameter used to specify appropriate rebar lapping length.
- Mat - a crisscross grid of rebar sticks. There may be more than one mat with space in between mats.
- Size - the indicator of the diameter of rebar sticks. Note: guage is not a correct term for rebar.

In the United States, rebar sizes are in increments of 1/8^{th} inches in diameter. Therefore, size 4 is 4/8^{th} of an inch, which is 1/2", and size 8 is a full inch in diameter. Based on this and the density of steel used in rebar, the Rebar Size Table contains reasonably accurate specifications of rebar linear weight and lateral (face) area based on rebar size.

The most common lengths of pre-cut rebar in the United States are 20`, 40' and 60'. These are known as rebar sticks. When the dimensions of a slab, wall or other form exceed the length of a single stick of rebar, it is required to overlap and tie rebar pieces to create the added length. This process is called lapping, and the length of the overlapping rebar is the rebar lapping length. The length of the lap is specified by a "Lapping Factor (LF)" which is often 40 or 60 times the diameter of the rebar. Engineering specifications of a lapping factor should always be applied.

A class of rebar tools, both powered and manual, have been developed to aid construction workers in working with rebar. These include the following:

- Rebar Cutters are used to cleanly and safely cut sections of rebar.
- Rebar Benders are used to bend rebar sticks precisely to fit into concrete forms.
- Rebar Tiers are used to tie rebar grid intersections and for rebar lapping.

- Total Slab Weight - This includes the weight of the rebar and the concrete.
- Brick or Block Wall - Number of brick or block needed for a wall.
- Foundation - Poured - Amount of concrete needed for a poured foundation.
- Foundation - Block - Number of blocks needed for a foundation.