Processing...

`V = 1/3 * "h" *( "R" ^2+ "R" * "r" + "r" ^2)`

Enter a value for all fields

The **Volume of the Frustum of a Right Squared-base Pyramid** calculator computes the volume of a right square based pyramid with a frustum defined by base side length (**R**) and top side length (**r**) and height (**h**) in between.

**INSTRUCTIONS:** Choose units and enter the following:

- (
**r**) Length of one side of the four-sided square top (see diagram). - (
**R**) Length of one side of the four-sided square base (see diagram). - (
**h**) Height of frustum. This is the distance between the base and the top.

**Pyramid Frustum Volume (V):** The volume is returned in cubic meters. However, the user can automatically convert this to any of the other volume units (e.g. cubic feet, liters, or gallons) via the pull-down menu.

A Right Square Pyramid has a four sided base where all four sides are equal and have equal angled corners (90^{o}), which is a square. The pyramid is a right pyramid if the apex of the pyramid is directly above the center of the base square. The formula for the volume of a pyramid with a triangle base is:

`V = 1/3 * h*(R^2+R * r+r^2)`

where:

- V = volume of square pyramid frustum
- h = height of pyramid
- r = side length of top
- R = side length of base

- Volume of a Pyramid
- Mass or Weight of a Pyramid
- Volume of a Frustum of a Pyramid
- Mass of a Frustum of a Pyramid
- Volume of a Polygon Based Pyramid
- Mass of a Polygon Based Pyramid
- Volume of a Frustum of a Polygon Based Pyramid
- Mass of a Frustum of a Polygon Based Pyramid
- Mean Density of Many Substances: The Mean Density Lookup equation provides the mean density of hundreds (650+) substances from metals to gases, woods, food, liquids and much more. The results of the Mean Density look-up are in kg/m
^{3}. Use the answer for the substance you choose in the mass equation to approximate the mass or weight of the pyramid shaped object based on its shape, dimensions and the mean density of its composition.