Back to Directory

# Integral

An integral is a mathematical object that can be interpreted as an area or a generalization of area. Integrals, aka anti-derivatives and primitives, are the fundamental objects of calculus, together with derivatives. Integral calculus examines a function's change over some changing metric like time, distance, intensity, power, density, etc.

The Riemann integral is the simplest integral definition and the Calculus formula usually encountered in physics and elementary calculus.

With a few exceptions, this Integral folder contains common mathematical equations of **definite integrals**.

### Parent Categories:

## Integral Equations

- `int_a^b(z^n)dz`
- Trapezoid Method
- `int_a^b (1/(1-x^2))dx`
- `int_a^b (1/(cos^2(x)))dx`
- `int_a^b (1/(sin^2(x)))dx`
- `int_a^b (1/sqrt(1-x^2))dx`
- `int_a^b (1/sqrt(x^2+1))dx`
- `int_a^b 1/x dx`
- `int_a^b cos(x)dx`
- `int_a^b m^x dx`
- `int_a^b sin(x)dx`
- `int_a^b(1/z)dz`
- `int_a^b(e^x)dx`
- `int_a^b(z+v)^ndz`
- `int_a^b1/((z+v)*(z+w))dz`
- `int_a^b1/(1+z^2)dz`
- `int_a^b1/(u*z+v)dz`
- `int_a^b1/(uz^2 + vz+ w)dz`
- `int_a^b1/(v^2+z^2)dz`
- `int_a^b1/(z+u)^2dz`
- `int_a^b1/sqrt(c^2+x^2)dx`
- `int_a^bz*(z+v)^ndz`
- `int_a^bz/(v^2 + z^2)dz`
- `int_a^bz^2/(v^2 + z^2)dz`
- `int_a^bz^3/(v^2 + z^2)dz`
- Trapezoid Method Comparison